Writing A Scientific Paper for Publication

Achmad Nizar Hidayanto

1 Fakultas Ilmu Komputer, Universitas Indonesia

2 Ketua Bidang Riset & Perencanaan Strategis, APTIKOM

nizar@cs.ui.ac.id
Learning Outcomes

After completing this session, the participants are expected to be able to:

• Understand the structure of scientific papers
• Understand the processes for submitting a scientific paper to a journal
• Criticize and improve a scientific paper
1. Compose your message

- **What is new?**
 - What was not known, and is known now?

- **A paper is not a summary of your thesis**
 - Select the best parts of your research findings
 - A thesis can be divided into some sub-works

- **What position statement do you want to make?**
 - Formulate a one sentence position statement

- **RICE test**
 - **Rigour**: show that the research process is adequately and thoroughly performed
 - **Interesting**: the results are appealing for a wide audience
 - **Contribution**: significant and valuable addition to knowledge
 - **Exposition**: explain everything in a logical and clear manner
2. Finding an outlet

Level
1. Workshop: 30 – 50 submission with 50% acceptance rate
2. Conference: 100 – 500 submissions with a 10-25% acceptance rate
3. Journal: 30% acceptance rate with long lead times

Subject
1. Narrow: Web Information Systems Modeling
3. Broad: Information Systems

Region
1. National
2. European, Americas, Asia, Australia, Nordic
3. Worldwide

☐ The higher the more competitive
• Common paper organization:
 – Title
 – Abstract
 – Introduction
 – Literature Review
 – Theory Development & Hypotheses
 – Methods
 – Results
 – Discussions & Implications
 – Limitation and Future Research
Titles should be interesting and reflect the content of the paper. Include key constructs in the title.

Examples:

Exploring differences between smaller and large organizations' corporate governance of information technology (Wilkin, Couchman, Sohal, & Zutshi, 2016).

Understanding the impact of m-banking on individual performance: DeLone & McLean and TTF perspective (Tam & Oliveira, 2016).
• It is a summary of the paper. A good abstract consists of three elements: introduction, methodology, and conclusions.

• You could touch on each of the major sections of the paper. Do not forget to introduce key constructs and clarify contribution. Show that it is interesting.

• Huff (1999) suggests that we use short sentences, present tense, active voice and reduce redundancies. She suggests that the order of sentences in an abstract follow that of the paper.
Understanding the impact of m-banking on individual performance: DeLone & McLean and TTF perspective

“Mobile banking (m-banking) is an expanding application of mobile commerce that has claimed the attention and interest of e-commerce researchers. One of the most welcome recent developments in m-banking has been the growing interest in end-user use, user satisfaction, and individual performance. We propose a model combining the DeLone & McLean IS success model and the Task Technology Fit (TTF) model to evaluate the impact of m-banking on individual performance. The empirical approach is based on an online survey questionnaire of 233 individuals. The results reveal that use and user satisfaction are important precedents of individual performance, and the importance of the moderating effects of TTF over usage to individual performance. The system quality, information quality, and service quality positively affect user satisfaction. Understanding the significance of m-banking context on individual performance is useful to provide new insight to m-banking managers to apply strategies to retain users or even attract potential adopters. We provide the theoretical and practical implications of our findings.” (Tam & Oliveira, 2016)
Moody news: The impact of collective emotion ratings on online news consumers’ attitudes, memory, and behavioral intentions

“Indicators of collective user behavior and opinion are increasingly common features of online news stories and may include information about how the story made users feel. An experiment (N = 298) examined the effects of the presence and valence of a “moodmeter” posted alongside an online human-interest story on memory for, attitude toward, emotional response to, and intentions to share the story. The presence of a mood meter led to lower recall of story content, more negative attitudes toward the story, and less positive emotional responses. The results suggest that participating in a mood meter may attenuate positive responses to human-interest stories.” (Myrick & Wojdynski, 2016).
• Key issues that should be raised in the introduction section:
 1. Identify research question and define key constructs
 2. Explain why the research question is important (researchers and/or practitioners) i.e. advancing understanding
 3. Describe setting
 4. Recognize issues raised in the existing literature
 5. Identify contribution
 6. Introduce the structure of the paper
Understanding the impact of m-banking on individual performance: DeLone & McLean and TTF perspective

1. Introduction

Mobile banking (m-banking), also referred to as cell phone banking, is the use of mobile devices such as personal digital assistants (PDA), mobile telephones, smartphones, and tablet computers to access banking networks via the wireless application protocol (WAP) for financial services (Shaikh & Karjaluoto, 2015). M-banking enables users to access account balances, pay bills, transfer funds, and perform other financial services, at any time and anywhere. It is widely recognized that the use of m-banking is influenced by more than the core service. Use decisions might be influenced by the service quality of the interaction with personnel, task characteristics, and many other factors. These factors are considered to enlarge the core service in the eyes of the customer, such that customers respond to both the core and the enlarged service when making use decisions.

We applied the terminology of the individual performance to express the idea in the m-banking context of efficiency and effectiveness performing banking tasks. This paper explains the benefits of performing banking tasks at a high level, since time saving and effort can be a source of individual performance. Use and end-user satisfaction have an important impact on m-banking individual performance. Performing banking tasks at a high level can be a source of individual performance, bringing feelings of control and fulfilment.

An extensive body of research has been developed to understand the determinants of m-banking adoption. In their literature review of m-banking research between the years of 2005 and 2014 (which includes 55 studies), Shaikh and Karjaluoto (2015) report motivations, attitudes, behavioural intention, social systems, and associations that influenced potential m-banking adopters. Hoehle, Scornavacca, and Huff (2012) identified 56 m-banking adoption research sources published between 2001 and 2010. Another m-banking literature review published by Dewan (2010) lists 65 articles published between January 2000 and May 2010, identifying five main categories: m-banking overview and conceptual issues, m-banking applications and cases, m-banking behavioural issues, infrastructures of mobile users and networks, and strategic, legal, and ethical issues. To enhance the current understanding of m-banking, Dewan (2010) emphasized the need for more theory-based empirical research from a non-traditional perspective. We provide further insights into individual performance implications within the broad conceptualization of fit amongst task characteristics, technology characteristics, system quality, information quality, and service quality.

* Corresponding author.
E-mail addresses: tam@netcabo.pt (C. Tam), toliveira@novaims.unl.pt (T. Oliveira).

Gap in existing literatures
Understanding the impact of m-banking on individual performance: DeLone & McLean and TTF perspective

The objective of this study is to address the following research questions: (1) What determinants influence m-banking use, end-user satisfaction, and individual performance? (2) Does task technology fit (TTF) have only a direct effect on individual performance? (3) Does TTF moderate the use on the individual performance and the user satisfaction on the individual performance? To answer these questions and provide a better understanding of the impact of m-banking on individual performance, we develop a theoretical model that combines the DeLone & McLean (D&M) model (DeLone & McLean, 1992, 2003) and the TTF model (D. L. Goodhue & Thompson, 1995), by including the moderating effect of TTF on the link between use and individual performance, and the link between user satisfaction and individual performance. Based on that, our contribution with this research is twofold. Firstly, to the best of our knowledge this is the first time that the D&M model (DeLone & McLean, 1992, 2003) and the TTF model (D. L. Goodhue & Thompson, 1995) are combined on m-banking individual performance value. As our study is based on two well-established theories, the integration into a single model contributes to the information system (IS) discipline. Secondly, this research examines the importance of TTF not only as a direct effect on individual performance, but also as the moderator effects of use and user satisfaction on individual performance. We expect this study to offer instrumental insights to m-banking managers for them to apply the right policies to retain users and attract potential m-banking adopters.

The remainder of this paper is organized as follows. We first revisit the literature related to m-banking individual performance. The theoretical bases of the study are then described. The D&M model and TTF model are the foundation for the theoretical model of the study. Following this, the research methodology and the data analysis using structural equation modeling are presented. The paper concludes with a discussion of results, contributions to theory and practice, limitations, and suggestions for future research.
• To show the current state of knowledge as well as to highlight your contribution. So do not just focus on others’ work but also voice yours. Provide thorough discussions of the current literature insights for each of the key constructs and relationships between them.

• Discuss key theories underlying your research

• Discuss the application of the theory in other fields

• Summarize your finding in form of table (if necessary)
 – For example to summarize related researches
Example: *Understanding the impact of m-banking on individual performance: DeLone & McLean and TTF perspective*

- Content of the Literature Review section
 - M-banking individual performance
 - DeLone & McLean
 - Task technology fit
 - Integrated Model of D&M and TTF
between user satisfaction and individual performance. Based on that, our contribution with this research is twofold. Firstly, to the best of our knowledge this is the first time that the D&M model (DeLone & McLean, 1992, 2003) and the TIF model (D. L. Goodhue & Thompson, 1995) are combined on m-banking individual performance value. As our study is based on two well-established theories, the integration into a single model contributes to the information system (IS) discipline. Secondly, this research examines the importance of TIF not only as a direct effect on individual performance, but also as the moderator effects of use and user satisfaction on individual performance. We expect this study to offer instrumental insights to m-banking managers for them to apply the right policies to retain users and attract potential m-banking adopters.

The remainder of this paper is organized as follows. We first revisit the literature related to m-banking individual performance. The theoretical bases of the study are then described. The D&M model and TIF model are the foundation for the theoretical model of the study. Following this, the research methodology and data analysis using structural equation modeling are presented. The paper concludes with a discussion of results, contributions to theory and practice, limitations, and suggestions for future research.

2. Literature review

2.1. M-banking individual performance

M-banking is defined as the product or service offered by the financial industry using a mobile device, namely a mobile phone, smartphone, or tablet (Shaikh & Karjahanlou, 2015). Kim, Shin, and Lee (2009) also trace another definition for m-banking as the subset of applications of mobile e-commerce offered by the financial industry. In fact, mobile commerce is also known as a subset of e-commerce that uses radio-based wireless devices to conduct business transactions over the web (Keng & Zixing, 2003).

In recent decades the banking industry has faced several challenges and transformations. The evolution from a focus on local-centric (branches and ATM) to place-centric (internet banking) and then to equipment-centric (accessible anywhere, 24 h per day and 7 days a week) has brought time savings and reduced customer queues. Equipment-centric vision brings the customer closer to the bank since (s)he needs only a mobile device to carry out a financial service. In local-centric banking customers need to go to a physical place (a branch or an ATM), which may not be close to them. In place-centric banking, customers can conveniently carry out the vast majority of banking transactions remotely, provided that they have a computer with internet access. Consumers favour specific banking channels for specific product categories.

Three broad literature reviews have examined m-banking from Dumphy, 2015). In the current research we focus on individual performance applying two models, namely the D&M IS Success model (original and updated version) (DeLone & McLean, 1992, 2003), and the TIF model (D. L. Goodhue & Thompson, 1995). We select these models as the most appropriate and integrated to develop the proposed conceptual model for this study, which is to understand the significance of m-banking on individual performance.

The term “performance” usually relates to effectiveness and productivity. Individual performance is highly important for an organization as a whole and for the individuals working in it (Sonnenstag & Frese, 2002). In this research we adopt this term not in an organizational context, but at the individual level, to express the idea in the m-banking context of efficiency and effectiveness at performing banking tasks. Performing banking tasks at a high level could enhance time saving and effort and can be a source of individual performance. For Sonnenstag and Frese (2002) accomplishing tasks at a high level of proficiency or ease can be a source of performance, bringing feelings of mastery and pride. Poor accomplishment and outright failure in achieving one’s goals might be a source of dissatisfaction or even general feelings of shame.

Several examples related to the criticality of time in performing financial transactions, such as stock market operations, are highly sensitive due to market volatility and to their just-in-time nature. Checking an account balance or even verifying a salary deposit or payments processing are m-banking transactions that aim to meet market and customer demands of high level of individual performance. In the next two subsections we describe the theories applied in this research.

2.2. DeLone & McLean

The original D&M taxonomy was based on Mason’s (1978) modification of Shannon and Weaver’s (1949) mathematical theory of communications, which identified three levels of information: (a) the technical level (accuracy and efficiency of the system that produces it); (b) the semantic level (its ability to transfer the intended message), and (c) the effectiveness level (its impact on the receiver) (Shannon & Weaver, 1949). Mason (1978) adapted this theory for IS and expanded the effectiveness level into three sub-categories: (a) receipt of information, (b) influence on the recipient, and (c) influence on the system. The original D&M model (Fig. 1) identified six factors for the success of IS, namely system quality, information quality, system use, user satisfaction, individual impact, and organizational impact. This general theory of IS posits that the match between information quality and system quality is more likely to have a positive impact on performance if the end-user feels satisfaction and uses the system.

Pitt, Watson, and Kavan (1995) observe that the D&M information system success model did not include a measure of IS service quality. They believe that it is necessary to include IS service quality, and further assert that system quality, information quality, and service quality were the three major constructs of IS success.
LITERATURE REVIEW

The literature published from 1982 to 2007 that covered multiple levels of analysis, different types of IS, and different contexts to develop a taxonomy of IS success. Driven by the need for a process by which to understand IS success and its impacts, this taxonomy developed five determinant success categories: task, individual, social, project, and organizational characteristics. Nevertheless, given that the focus of task characteristics is applied to the activities supported by the organization and that we are interested in analyzing at individual level, we find the D.L. Goodhue and Thompson (1995) theory more suitable (see the next sub-section).

Several articles have been published in the IT/IS field that use the D&M IS Success model (original and updated version) as the theoretical base. These include knowledge management systems (KMS) (Velaquez, Durclos, & Sahnerwe, 2005), learning success systems (Cheok & Wong, 2015; H.-T. Lin, 2007), websites success goals (Schaupp, Fan, & Belanger, 2006), implementation success of enterprise resource planning (ERP) (Tsai, Chen, & Li, 2017), evaluation of the electronic health record (Bosson, Jensen, & Uden, 2013), and employee portal success (Urbach, Smolnik, & Riemp, 2010). Several authors demonstrate that D&M can combine with other models such as the unified theory of acceptance and usage of technology (UTAUT) to explain electronic patient records (Mathieu, & Sutcliffe, 2015); D&M with trust dimension to explain repurchase intention in online services (Hsu, Chang, Chu, & Lee, 2014), or continuance intention of mobile payment service (Zhou, 2013). In addition, Urbach and Müller (2012) expose several applications of each dimension of the D&M model, but to the best of our knowledge there is no literature on the D&M model in m-banking individual performance.

2.3. Task technology fit

Building on performance impact theory, D. L. Goodhue and Thompson (1995) used the TTF model (Fig. 2) to explain IS performance impact. TTF refers to the matching of the capabilities of the technology to the requirements of the task, that is, the ability of technology to support a task. The model theorizes that the fit between task characteristics and technology characteristics influences the use and performance impact (D. L. Goodhue & Thompson, 1995). A better fit of task-technology characteristics will encourage the use of m-banking, while the opposite reduces use intention (Lee, Cheng, & Cheng, 2007). The TTF model assumes users are rational and that they will use the technology as long as it best supports the task. Interest in this model derives from the fact that the TTF construct is treated as a composite with these three success dimensions embedded in it.

There are several applications applying the TTF model, such as explaining use of blogs (Shang, Chen, & Chen, 2007), KMS use (T. C. Lin & Huang, 2008), location-based services (LBS) (Jürgas, Abraham, & Watson, 2008), use of information technology (Dischow & Strong, 2003), use of mobile commerce in the insurance industry (Lee et al., 2002), performance impact using learning management systems (LMS) (McCullough & Klobas, 2009), and mobile work support (Yuan, Archer, Conner, & Zheng, 2010). Several investigations show that TTF can combine with other models such as UTAUT to explain user adoption of m-banking (Zhou, Lu, & Wang, 2010), technology acceptance model (TAM) to explain users’ intention to use wireless technology in organizations (Woo, Cheng, & Huang, 2010), and UTAUT combined with the initial trust model (ITM) to explain m-banking adoption (Oliveira, Farina, Thomas, & Popovic, 2014).

2.4. Integrated model of D&M and TTF

The D&M IS Success model (original and updated version) (DeLone & McLean, 1992, 2003) and the TTF model (D.L. Goodhue & Thompson, 1995), focus on different aspects/dimensions and have different perspectives on the influence of use and individual performance. Each model focuses on a certain perspective, which can hardly be embraced in its entirety and variety of possible

Diagram:

- **Task Characteristics**
- **Technology Characteristics**
- **Task Technology Fit**
- **USE**
- **Performance Impact**

Fig. 2: TTF model.
Example of Literature Review

Table 1

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Method</th>
<th>Sample size</th>
<th>Analysis level</th>
<th>Country</th>
<th>Hotel chains</th>
<th>Main findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) Fiorentino (1995)</td>
<td>Conceptual</td>
<td>/</td>
<td>Industry</td>
<td>International</td>
<td>/</td>
<td>A purposefully designed service formula for limited service hotels</td>
</tr>
<tr>
<td>(3) Parkan (1996)</td>
<td>OCRA procedure</td>
<td>7 Operational cases</td>
<td>Hotel chain</td>
<td>U.S.A.</td>
<td>Comfort Inn</td>
<td>Four important factors for budget hotels’ daily operations</td>
</tr>
<tr>
<td>(4) Min and Min (1997)</td>
<td>Gap analysis</td>
<td>144 Employees and 113 guests</td>
<td>Individuals</td>
<td>Korea</td>
<td>Six brands</td>
<td>Luxury hotels have different service criteria from budget hotels</td>
</tr>
<tr>
<td>(5) Heung and Wong (1997)</td>
<td>Survey</td>
<td>200 Travelers</td>
<td>Customer</td>
<td>Hong Kong</td>
<td>/</td>
<td>LODGERSV dimensions have different influences on service quality in economy hotels and luxury hotels</td>
</tr>
<tr>
<td>(6) Choi and Chu (1999)</td>
<td>Survey</td>
<td>540 Travelers</td>
<td>Customer</td>
<td>Hong Kong</td>
<td>/</td>
<td>Seven factors of quality service from 33 service attributes</td>
</tr>
<tr>
<td>(8) Brotherton (2004)</td>
<td>Survey</td>
<td>239 General managers</td>
<td>Hotel unit</td>
<td>U.K.</td>
<td>Six brands</td>
<td>Seven factors were drawn from 36 items for operational success</td>
</tr>
<tr>
<td>(9) Tanford et al. (2012)</td>
<td>Online survey</td>
<td>535 Respondents</td>
<td>Customer</td>
<td>U.S.A.</td>
<td>/</td>
<td>Customer purchase decisions in limited-service hotels were different from those in full-service hotels</td>
</tr>
<tr>
<td>(10) Wu and Lu (2012)</td>
<td>Survey</td>
<td>560 Managers or owners</td>
<td>Individuals</td>
<td>Taiwan</td>
<td>/</td>
<td>The critical role of customer relationship management in hotel performance</td>
</tr>
<tr>
<td>(11) Zhang et al. (2013b)</td>
<td>Qualitative</td>
<td>11 Managers</td>
<td>Hotel chain</td>
<td>China</td>
<td>Home Inns</td>
<td>Critical factors for the operational success of budget hotels</td>
</tr>
</tbody>
</table>

Note: To show the flow of the research, the table is first sorted chronologically and then alphabetically.
Research is about advancing understanding, so literature review must not necessarily lead to filling the gap. What is more important is advancing understanding, not simply filling any gaps. You can use a model to depict your theory.

Hypotheses: tell a story that explains why the relationships exist.

- What are the justifications of your hypotheses? You should argue each hypothesis with strong reason
- Start from the definition of the variables

Common mistakes:
- 1) just showing the hypothesis existed in prior researches,
- 2) the justifications are not directed to support the relationship between variables,
- 3) the context is not relevant with the object being studied.
situation by a particular model (Abugabah & Sanzogni, 2010). Each model has strengths and weaknesses, and these are offset and complemented by combining the various models. The D&M and TTF models complement each other, meaning that their combination is useful for understanding the impact of individual performance and IS discipline. Moreover, weaknesses in the two models can be compensated for by connecting them with each other. For example, the D&M model’s weakness is the lack of consideration of how well technology characteristics fit the task characteristics. On the other hand, TTF models do not include system quality, information quality, or service quality toward m-banking user satisfaction. The convergent constructs of both models improve our understanding of m-banking use and individual performance.

3. Research model

M-banking is one of the most important issues in financial industries. In this study we posit that TTF, the measures in D&M IS success, and the service quality in the updated D&M model play important roles in the individual performance. We propose a research model that is theoretically grounded on two well-established theories: D&M and TTF. D. L. Goodhue and Thompson (1995, p. 213) tested the effect of individual performance based on the task characteristics, technology characteristics, and use. The D&M model (original and updated versions) proposed an IS success model, which argues that system quality, information quality, and service quality affect use and user satisfaction, and that all of these lead to individual and organizational performance impact. Since measuring the quality of information systems is a multidimensional process focusing on many of the aspects of a system such as system features, quality features, usability aspects, and other features related to technical issues (Urbach & Müller, 2012). Typical measures of the system quality in traditional studies include response time, ease of use, flexibility, and stability (Wu & Wang, 2006). Due to a device’s physical restrictions, such as the small size keypad, small screen, and other constraints, by enhancing overall m-banking system quality we expect to mitigate negative factors. Taking this background into account, higher system quality is expected to lead to greater TTF, more use, and increased user satisfaction, which will lead to positive impacts on individual performance.

H1a. System quality has a positive influence on TTF in m-banking.
H1b. System quality has a positive influence on use of m-banking.
H1c. System quality has a positive influence on user satisfaction of m-banking.

Information quality comprises the desirable characteristics (e.g., relevance, accuracy, timeliness, completeness, understandability, and accessibility) of the system outputs; that is, management reports and Web pages (Petter et al., 2013). For Akter, D’Ambra, and Ray (2013) information quality plays a critical role in developing a positive attitude toward the benefits of using a specific information technology (IT). For Urbach and Müller (2012) the “information quality is often seen as a key antecedent of user satisfaction.” The information quality shapes attitudes about information and system satisfaction, which in turn influences behavioural beliefs, such as
III. RESEARCH MODEL

Figure 1 shows the conceptual model for this study. This model is adopted from the prior research of repurchase intention in online group-buying [5]. Online group-buying and online marketplaces have similarities in terms of business model. They unite sellers and buyers in an online trading infrastructure. Their components are relatively similar, the website and the sellers.

![Research Model Diagram]

Hypothesis 3b: Comprehensive services from sellers are positively influencing users’ satisfaction towards sellers

Hypothesis 4a: Reliable websites are positively influencing users’ satisfaction towards websites

Hypothesis 4b: Reliable sellers are positively influencing users’ satisfaction towards sellers

Hypothesis 5a: Reliable websites trigger better quality perception of website

Hypothesis 5b: Reliable sellers trigger better quality perception sellers

Hypothesis 6a: Prestigious websites are encouraging trust towards websites

Hypothesis 6b: Prestigious sellers are encouraging trust towards sellers

Hypothesis 7a: Users’ perception of website size is positively influencing their trust towards the website

Hypothesis 7b: Users’ perception of merchant size is positively influencing their trust towards the merchant

Based on model above, seven hypotheses for seller and website perspective respectively can be stated on below.

Hypothesis 1a: Satisfaction towards websites is encouraging users to repeat buying

Hypothesis 1b: Satisfaction towards sellers is encouraging users to repeat buying

Hypothesis 2a: Comprehensive aspects of websites are encouraging users to repeat buying

Hypothesis 2b: Comprehensive services from sellers are encouraging users to repeat buying
What are the weaknesses of the hypotheses development???
• As I explained before, this section discussed your research design. It contains data collection, sample, measures, and analysis tools. This section informs the readers how the researcher/s arrive at the findings, conclusions or contribution.

• Describe the study procedures, context and explain why the procedure is appropriate to test the research questions (Daft, 1995).

• Common mistake:
 – discuss research steps (problem formulation, literature review, propose model, data collection, so on) instead of your research design
METHODS

• Example of Methods section (survey)

4. Methods

4.1. Measurement

Our target population is the current users of m-banking. Our study was conducted in a European country (Portugal) in the context of users of m-banking. M-banking supports miscellaneous financial services that can be accessed using a mobile device over a wide geographic area and at any time.

All measurement items (Appendix A) were adapted from Urbach et al. (2010), Zhou et al. (2010), Wu and Wang (2006), and T. C. Lin and Huang (2008), with slight modifications. From the literature, system quality (SYSQ), information quality (INFOQ), service quality (SERQ), and individual performance (PI) came from Urbach et al. (2010); task characteristics (TASK), technology characteristics (TECH), and USE were adopted from Zhou et al. (2010); user satisfaction (US) from Wu and Wang (2006), and task technology fit (TIF) from T. C. Lin and Huang (2008). The items for all constructs are included in Appendix A.

4.2. Data

A questionnaire was initially developed in English, based on the literature, and the final version was independently translated into Portuguese by a professional translator, and then back into English by a different translator to ensure translation equivalence (Brislin, 1970). The data were collected using an online survey conducted via a popular survey website between November 2014 and February 2015. Most items were measured using seven-point Likert scales, ranging from totally disagree (1) to totally agree (7). To test the instrument, a pilot study was conducted on a group of 30 college students who were not included in the main survey. A total of 1100 e-mails were sent in November 2014 providing the hyperlink to the survey and inviting participation in it. A follow-up reminder was sent in January 2015 to non-respondents. 329 responses were received at the end of February 2015, which corresponds to a 29.9 percent response rate. 96 responses were removed due to incompleteness, leaving 233 (21.2 percent) with valid and complete responses. To test for non-response bias, the sample distribution of the early and late respondent groups were compared using the Kolmogorov-Smirnov (K-S) test (Ryan, 1974). The sample distributions of the two groups did not differ significantly, indicating an absence of non-response bias (Ryan, 1974). The results revealed no statistically significant difference (p > 0.01), indicating the absence of non-response bias. Additionally, to test for common method bias, the marker variable technique was employed (Lindell & Whitney, 2001; Malhotra, Kim, & Patil, 2006). No significant common method bias was found in the data set.

The study addresses m-banking users. A total of 139 respondents (60%) are men; 111 (48%) of the respondents are 35 years old or younger. Concerning m-banking usage frequency, 33 percent use it every day and 41 percent between three to five times per month. Detailed descriptive statistics relating to the respondents’ characteristics are in Table 1.
METHODS

Example of Methods section (survey)

<table>
<thead>
<tr>
<th>Constructs</th>
<th>Items</th>
<th>Adapted from</th>
</tr>
</thead>
<tbody>
<tr>
<td>System quality</td>
<td>SYSQ1 – M-banking is easy to navigate</td>
<td>(Urbach et al., 2010)</td>
</tr>
<tr>
<td></td>
<td>SYSQ2 – M-banking allows me to easily find the information I am looking for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYSQ3 – M-banking is well structured</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYSQ4 – M-banking is easy to use</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYSQ5 – M-banking offers appropriate functionality</td>
<td></td>
</tr>
<tr>
<td>Information quality</td>
<td>INFQ1 – The information provided by m-banking is useful</td>
<td>(Urbach et al., 2010)</td>
</tr>
<tr>
<td></td>
<td>INFQ2 – The information provided by m-banking is understandable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INFQ3 – The information provided by m-banking is interesting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INFQ4 – The information provided by m-banking is reliable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INFQ5 – The information provided by m-banking is complete</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INFQ6 – The information provided by m-banking is up-to-date</td>
<td></td>
</tr>
<tr>
<td>Service quality</td>
<td>SERQ1 – The responsible service personnel are always highly willing to help whenever I need support with the m-banking</td>
<td>(Urbach et al., 2010)</td>
</tr>
<tr>
<td></td>
<td>SERQ2 – The responsible service personnel provide personal attention when I experience problems with the m-banking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SERQ3 – The responsible service personnel provide services related to the m-banking at the promised time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SERQ4 – The responsible service personnel have sufficient knowledge to answer my questions with respect to the m-banking</td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td>USF1 – I use m-banking</td>
<td>(Zhou et al., 2010)</td>
</tr>
<tr>
<td></td>
<td>USF2 – I use m-banking to manage my accounts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>USF3 – I use m-banking to make transfers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>USF4 – I subscribe to financial products that are exclusive to m-banking</td>
<td></td>
</tr>
<tr>
<td>User satisfaction</td>
<td>US1 – I am satisfied that m-banking meets my knowledge or information processing needs</td>
<td>(Wu & Wang, 2006)</td>
</tr>
<tr>
<td></td>
<td>US2 – I am satisfied with m-banking efficiency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US3 – I am satisfied with m-banking effectiveness</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US4 – Overall, I am satisfied with m-banking</td>
<td></td>
</tr>
<tr>
<td>Individual performance</td>
<td>PI1: The m-banking enables me to accomplish tasks more quickly</td>
<td>(Urbach et al., 2010)</td>
</tr>
<tr>
<td></td>
<td>PI2: The m-banking makes it easier to accomplish tasks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PI3: The m-banking is useful for my job</td>
<td></td>
</tr>
<tr>
<td>Task characteristics</td>
<td>TASK1 – I need to manage my accounts anytime anywhere</td>
<td>(Zhou et al., 2010)</td>
</tr>
<tr>
<td></td>
<td>TASK2 – I need to do transfer anytime anywhere</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TASK3 – I need to have a real time control in my accounts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TASK4 – The financial instructions I give can’t wait</td>
<td></td>
</tr>
<tr>
<td>Technology characteristics</td>
<td>TECH1 – M-banking provides ubiquitous services</td>
<td>(Zhou et al., 2010)</td>
</tr>
<tr>
<td></td>
<td>TECH2 – M-banking provides real time services</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TECH3 – M-banking provides a quick service</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TECH4 – M-banking provides secure services</td>
<td></td>
</tr>
<tr>
<td>Task technology fit</td>
<td>TTF1 – M-banking payment services are appropriate</td>
<td>(T.C. Lin & Huang, 2008)</td>
</tr>
<tr>
<td></td>
<td>TTF2 – M-banking account management services are appropriate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TTF3 – Real time m-banking services are appropriate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TTF4 – In general, m-banking services are enough</td>
<td></td>
</tr>
</tbody>
</table>
METHODS

• Example of Methods section (experimental)

Method

This study is a 4 (Mood meter: Absent, readers report being inspired or happy, readers report not caring or being annoyed, and readers report a mix of many different emotions) × 2 (Timing of emotions self-report: Immediately after consuming the stimulus materials versus after remaining questionnaire items) between-subjects fully factorial experiment.

Participants

Participants were recruited on Amazon’s Mechanical Turk (MTurk) website. MTurk is an increasingly common and valid pool of participants for social science research (Buhrmester et al., 2011). Participation was limited to individuals residing in the United States who had a previous MTurk completion rate of at least 90% and had previously participated in at least 50 human intelligence tasks on the platform. These restrictions help prevent fraudulent participation. A total of 329 MTurk members participated. However, 31 participants were removed from the analysis because they spent less than 45 seconds on the stimulus page (as measured by a concealed Qualtrics timer, final N=298). The final sample was 58.05% male, 81.5% Caucasian, and nearly half of the participants (47.65%) had at least a bachelor’s degree.
METHODS

• Example of Methods section (experimental)

Procedures

An online questionnaire hosted by Qualtrics first assessed demographics and trait self-monitoring. Next, the questionnaire randomly displayed one of four mock websites to participants. Following the stimulus, Qualtrics randomly presented participants with items measuring emotional reactions to the story or with the remaining dependent variables (DVs). If participants saw the emotion questions first, they then viewed the remaining measures. If participants saw the remaining measures first, they saw the emotion items last before completing the questionnaire. After participating, participants received a code to submit to MTurk in order to receive compensation of USD 0.50. A university Institutional Review Board approved all procedures.

Stimulus material

All participants saw the same 719-word mock human-interest news story (created for this study). The story, modeled after actual human-interest news stories, told of a small-town lottery winner who continued to live a simple life and generously shared his riches with neighbors in need. The story appeared to participants as part of a screenshot of a mock news website named Newslinger.com.

In the no-mood-meter condition, participants only saw the header of the Newslinger website and the stimulus story. In the mood meter conditions, participants saw a “News Mood Meter” to the right of the story content (see Figures 1 and 2 for sample stimuli). This mood meter for the positive emotion condition reported most readers feeling “inspired” and “happy” about the story. For the negative emotion condition, the mood meter displayed feelings of “don’t care” and “annoyed,” and for the mixed emotion condition, the mood meter displayed a relatively even distribution of seven different emotions.
METHODS

- Example of Methods section (experimental)
METHODS

Example of qualitative study

3. Exploratory Study

3.1. Research Method

Following the guidelines for developmental mixed methods studies [72], we adopted a qualitative research method first to explore the potential purchase decision factors for mobile Apps by interviewing mobile App buyers. An interview approach has several strengths such as the capability to focus directly on the research topic and to deliver perceived causal inferences [79]. We conducted interviews with 30 randomly selected buyers who had purchased Apps at least once for their smartphones in the last 1 month [19]. The majority of the interviewees were Apple iPhone users. The sample consisted of 10 undergraduate students, 9 graduate students, and 11 professionals, with an average age of 27.3 years. Eighteen of them were males (60%), and 12 were females (40%). Their average length of smartphone use was 11.39 months. The interviews were conducted one-on-one in an informal environment and lasted from 10 to 20 minutes. The interviewees were asked a series of questions, i.e., what mobile Apps they bought, the factors that affected their purchase of each mobile App, and further questions to clarify the factors. As a token incentive, we offered a gift voucher worth US$5 to each interviewee.

The interviews were recorded and transcribed, after which the transcripts were analyzed using open and axial coding following principles from Corbin and Strauss [13]. The coding was performed by three researchers, with one coder uninvolved in the data collection to avoid potential bias. During open coding, each coder examined the interview transcripts line by line to find concepts within the textual data that could explain interviewees’ mobile App purchase. The coders then discussed each concept identified and named it after arriving at a consensus. We then grouped these concepts into broader categories (i.e., higher level concepts) that reflected commonalities among the codes, which helped reduce the number of concepts and evolve them into theoretical constructs. Open coding was thus used to delineate concepts and group them into meaningful categories. During axial coding, we related the categories to develop causal relationships that can tentatively explain mobile App purchase, i.e., our core category. Subsequently, the categories (constructs) were interpreted and inter-related using a framework based on mental accounting theory, thus developing our research model (as described in sections 4.1 and 4.2).

Table 3. Coding Results

<table>
<thead>
<tr>
<th>Domain</th>
<th>Category</th>
<th>Concepts</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marketing practice</td>
<td>WOM about App</td>
<td>Recommendation by friends, User feedback, App popularity</td>
<td>83</td>
<td>40.35%</td>
</tr>
<tr>
<td></td>
<td>App trialability</td>
<td>Trial version, Test</td>
<td>31</td>
<td>10.16%</td>
</tr>
<tr>
<td>Product</td>
<td>App usefulness</td>
<td>Convenience, Userfulness, Work, Information collection, Learning, Communication</td>
<td>83</td>
<td>26.56%</td>
</tr>
<tr>
<td></td>
<td>App enjoyment</td>
<td>Pleasure, Playfulness, Curiosity, Passing time</td>
<td>27</td>
<td>8.85%</td>
</tr>
<tr>
<td>Bargain</td>
<td>Monetary value of App</td>
<td>Value for price, Fair price</td>
<td>33</td>
<td>10.82%</td>
</tr>
<tr>
<td>Others</td>
<td>Easy to use, Compatibility, Individual interest</td>
<td></td>
<td>10</td>
<td>3.28%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>305</td>
<td>100.06%</td>
</tr>
</tbody>
</table>
RESULTS

• Objectively present your findings, and explain what was found

• Show that your new results are contributing to the body of scientific knowledge

• Follow a logical sequence based on the tables and figures presenting the findings to answer the question or hypothesis

• Figures should have a brief description (a legend), providing the reader sufficient information to know how the data were produced
EXAMPLE OF RESULTS

(2010); task characteristics (TASK), technology characteristics (TECH), and USE were adopted from Zhou et al. (2010); user satisfaction (US) from Wu and Wang (2006), and task technology fit (TTF) from T. C. Lin and Huang (2008). The items for all constructs are included in Appendix A.

4.2. Data

A questionnaire was initially developed in English, based on the literature, and the final version was independently translated into Portuguese by a professional translator, and then back into English by a different translator to ensure translation equivalence (Brislin, 1970). The data were collected using an online survey conducted via a popular survey website between November 2014 and February 2015. Most items were measured using seven-point Likert scales, ranging from totally disagree (1) to totally agree (7). To test the instrument, a pilot study was conducted on a group of 30 college students who were not included in the main survey. A total of 1100 e-mails were sent in November 2014 providing the hyperlink to the survey and inviting participation in it. A follow-up reminder was sent in January 2015 to non-respondents. 329 responses were received at the end of February 2015, which corresponds to a 29.9 percent response rate. 96 responses were removed due to incompleteness, leaving 233 (21.2 percent) with valid and complete responses. To test for non-response bias, the sample distribution of the early and late respondent groups were compared using the Kolmogorov-Smirnov (K-S) test (Ryan, 1974). The sample distributions of the two groups did not differ significantly, indicating an absence of non-response bias (Ryan, 1974). The results revealed no statistically significant difference (p > 0.01), indicating the absence of non-response bias. Additionally, to test for common method bias, the marker variable technique was employed (Lindell & Whitney, 2001; Malhotra, Kim, & Patil, 2006). No significant common method bias was found in the data set.

The study addresses m-banking users. A total of 139 respondents (60%) are men; 111 (48%) of the respondents are 35 years old or younger. Concerning m-banking usage frequency, 33 percent use it every day and 41 percent between three to five times per month. Detailed descriptive statistics relating to the respondents’ characteristics are in Table 1.

5. Results

The data analysis was carried out using structural equation modeling (SEM). The models were estimated with partial least squares (PLS), which has been widely selected as a tool in the IS/IT field (Chin, Marcolin, & Newsted, 2003). PLS was chosen because: (i) not all items in our data are distributed normally (p < 0.01 based on Kolmogorov-Smirnov’s test); (ii) the research model has not been tested in the literature; (iii) the research model is considered to be complex; (iv) PLS estimation (US) from Wu and Wang (2006), and task technology fit (TTF) from T. C. Lin and Huang (2008). The items for all constructs are included in Appendix A.

5.1. Measurement model

Tables 2 and 3 present the measurement model results. The results for composite reliability (CR) are greater than 0.9, indicating that the model has good internal consistency. The good indicator reliability was evaluated based on the criterion that the loadings should be greater than 0.70. As seen in Table 2, the loadings are above 0.70. Average variance extracted (AVE) was used to test convergent validity. AVE should be higher than 0.50 so that the latent variables explain more than half of the variance of their indicators (Hair, Hult, Ringle, & Sarstedt, 2014; Henseler, Ringle, & Sinkovics, 2009). As is also seen in Table 3, AVE for each construct is above the expected threshold of 0.5, ensuring convergence. These results assure the validity and reliability of the measures in this research. To further examine the discriminant validity of the measures used, two methods were employed. First, the square roots of AVEs (diagonal elements) are greater than the correlation between each pair of constructs (off-diagonal elements) (Fornell & Larcker, 1981). Second, to ensure the discriminant validity, the loadings should be larger than cross-loadings (Chin, 1998a; Grégoire & Fisher, 2006; Götz, Lehr-Gobbers, & Kraft, 2010). In Table 3 we can see that the square root of AVE (in bold) is higher than the correlation between constructs. The measurement model results indicate that the model has good internal consistency, indicator reliability, convergent validity, and discriminant validity. Hence, the constructs of our model are statistically distinct and can be used to test the structural model.

5.2. Structural model

Since hypotheses H4 and H5 include a mutual influence between use and user satisfaction that cannot be tested simultaneously, we tested two different models. Model 1 assumes that the influence is from use to user satisfaction (H4), whereas model 2 flows from user satisfaction to use (H5). The results of the tests performed on the two structural models are depicted in Fig. 4. The upper path coefficients give the results of model 1 and the lower ones of model 2. The path coefficient for the model with bootstrapping t-statistics is derived from standard error with 5000 iterations (Hair et al., 2014).

The results can be summarized as follows. The model explains 56.9% (in model 1) and 71.2% (in model 2) of the variation in m-banking use. The user satisfaction (8 = 0.758, p < 0.01) is statistically significant in explaining the use, thus confirming hypothesis

Table 1
Sample characteristics.
EXAMPLE OF RESULTS

- Explain step-by-step until you produce the results to conclude your hypotheses

Table 4

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Effect size</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>0.020</td>
<td>0.012</td>
</tr>
<tr>
<td>H1b: System quality → Use</td>
<td>0.026</td>
<td>0.045</td>
</tr>
<tr>
<td>H2b: Information quality → Use</td>
<td>0.052</td>
<td>0.090</td>
</tr>
<tr>
<td>H3b: Service quality → Use</td>
<td>-0.035</td>
<td>0.017</td>
</tr>
<tr>
<td>H4b: Task fit</td>
<td>0.028</td>
<td>0.063</td>
</tr>
<tr>
<td>H5b: Use satisfaction</td>
<td>0.027</td>
<td>0.073</td>
</tr>
<tr>
<td>H6b: Use → Individual performance</td>
<td>0.155</td>
<td>0.267</td>
</tr>
<tr>
<td>H7b: User satisfaction → Individual performance</td>
<td>0.046</td>
<td>0.005</td>
</tr>
<tr>
<td>H8b: Task fit x Individual performance</td>
<td>0.016</td>
<td>0.006</td>
</tr>
<tr>
<td>H9b: Use x Individual performance</td>
<td>-0.037</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Path: β; *p < 0.10, **p < 0.05, ***p < 0.01; Effect size: >0.35 large; >0.15 and ≤0.35 medium; >0.05 and ≤0.15 small (Chin, 1998; Cohen, 1988).

significant structural paths to the individual performance range from small to large effect size. The path TFF to individual performance shows a small effect size; the path use to individual performance shows a medium effect size, and the path user satisfaction to individual performance defines effect size of 0.362 as belonging to a large effect size.

The model’s predictive power was tested with a non-parametric and TFF (Q² = 0.621 in both models). Positive Q² values indicate that the prerequisites of predictive power for the model are fulfilled (Hair et al., 2014). The findings regarding the 19 hypotheses are summarized in Table 4.
DISCUSSION

- Describe what your results mean in context of what was already known about the subject
- Indicate how the results relate to expectations and to the literature previously cited
- Discuss your findings and carefully and explicitly articulate your theory/new insight of understanding. Explain how the research has moved the body of scientific knowledge forward
- Articulate why or how your contributions are important for researchers (theoretical implications) and practitioners (practical implications). (Note: choose research question wisely. Look for important contribution)
• Overall, research tells a story (Daft, 1995) that describes what, how, why, who, when and where of a phenomenon.

• You could include the limitations (boundary, methodological etc.) and future research sections in this section. Including the limitation helps the readers to interpret the findings more appropriately.
EXAMPLE OF DISCUSSION

1) Discuss the results, answer your research questions and “why” does the result like that

2) The relation to previous literature

3) Theoretical and practical implications

H11, that our hypotheses are totally or partial supported.

The use of m-banking in our model is explained by system quality, information quality, service quality, and TTF. The model explains 56.8% in model 1 (when the use explains user satisfaction) and 71.2% in model 2 (when the user satisfaction explains the total of the variation in m-banking use). Our hypotheses derived from system quality, information quality, and TTF to explain use are partially supported, i.e. only supported in model 1, and service quality is not supported (in either model). Considering only the results of overall quality (SYSD, SQI, and SRIQ) of m-banking to explain use, the results are consistent with those reported in similar studies (e.g., Uthabach et al., 2010).

Our research model validates the relationship between overall quality (SYSD, SQI, and SRIQ) of m-banking and user satisfaction. The model explains 82.2% in model 1 and 71.2% in model 2 of the variation in user satisfaction m-banking. These figures are comparable to previous studies (e.g., Hrefmann, Lee, Zo, & Ciganek, 2013; H-F. Lin, 2007; H-F. Lin & Lee, 2006). Specifically, the findings demonstrate how important it is to enhance the system quality, information quality, and service quality and the influence of these on the user satisfaction.

The research model explains 72.9% of the variation in the TTF. Compared with previous findings about m-banking adoption with TTF application (Zhou et al., 2010), our study reached a greater extent of the predictive power. These results demonstrate the positive effects of system quality, information quality, technology characteristics, and task characteristics on TTF.

The research model explains 77.9% of the variation in individual performance, which presents a stronger predictive power (Chin, 1998a). Based on these results, we argue that use and user satisfaction lead to m-banking individual performance. In addition, it also confirms that TTF moderates the relationship between the use and user satisfaction of m-banking to explain individual performance. Our results suggest that having a high value of TTF means that the effects of use on individual performance will be stronger, but on the other hand, the moderate effects of user satisfaction on the individual performance will be weaker. If the m-banking users feel that service fits their task needs, the use will gain power and user satisfaction will lose power in explaining the individual performance.

The implications of the study to theory and practice are summarized below.

6.1. Theoretical implications

From the theoretical perspective this study integrates D&M and TTF to explain individual performance of m-banking. We found that TTF has no direct influence on individual performance, but when we applied the moderating effect of TTF on use to individual performance, and user satisfaction to individual performance, our results demonstrated that TTF plays an important role. With these results, the contributions of the study are twofold: first, the study enhances the individual body of knowledge on m-banking individual performance. To the best of our knowledge, most m-banking research focuses on potential adopters. This is an area of m-banking research that is yet unexplored. Second, some constructs have no direct impact on another, but testing in combination with other constructs as a moderation effect could play an important role. This would enhance the validity of testing several scenarios to uncover
work has shown that negatively valanced media are remembered better than positive, this line of research could be conceptually strengthened by testing the impact of different types of mood meters on different types of memory (e.g. recall).

There are several limitations to this study that constrain the generalizability of its findings regarding the influence of mood meters. First, all of the conditions in the study utilized the same news story, with generally uplifting human-interest content of little relevance to current issues or policies. Therefore, future work should employ multiple examples of human-interest stories in order to better ensure the results apply to the genre as a whole. Second, participants did not vote on actual mood meter. Instead, half of the participants reported their emotional reactions first (to simulate voting on a mood meter) prior to responding to the remaining items in the questionnaire. Future work could test functional mood meters to improve the ecological validity of this manipulation. Third, only slightly more than half of the participants who saw stimuli with a mood meter consciously recalled seeing it. Future work could employ eye-tracking software to get a better idea of how much attention news audiences pay to mood meters.

Another limitation of this study is that the uplifting tone of the story may have provided a floor effect to some of the dependent measures. The examination of how mood meters interact with other types of news content may yield important interactions between the content valence or type and the valence of the mood displayed on the meter. The role of congruity between collective mood meter valence and the user’s expectations or own emotional response may be substantial, but additional scholarship is needed. The mood meter conditions in this study examined three distributions of mood valence, but it is possible that more extreme distributions (i.e. 100% angry) would have a greater impact on readers’ responses.

Future research should address the limitations itemized above by varying story content and tone and deliberately juxtaposing the stories with tone-congruent and tone-incongruent mood meter distributions. Additionally, previous work has found audience moods influence the consumption of good versus bad news (Biswas et al., 1994). However, that study, as with other research on selective exposure and mood management (Zillmann and Bryant, 1985), did not examine the influence of explicit representations of others’ mood-ratings of content on users. Future research could explore how online news consumers selectively expose themselves to news stories in the presence of explicit...
DISCUSSION

• Common mistakes:

1. The discussion section just contains result. For example, when processing the survey data with SEM, the authors just present the results of data processing (just displaying the hypotheses being rejected/accepted)

2. The implications are not related to the research findings. For example, in the correlational research, your implications should discuss “so what” aspects from accepted hypotheses.

3. Limitation vs future research direction.
 • Limitation: highlight the limitation in the method used that may affect the results. For example, number of sample, proportion male and female, etc.
 • Future research direction, something that “inspiring” other scholars to do a new research (not replicating yours)

3. Missing the implications (“so what”) section.
• Various parts of the paper must fit together.

• **Introduction, theory, method, results and discussion** sections must be in alignment.

• Must show theory skill, design skill, writing skill.
PLAGIARISM
• Plagiarism—the theft of another’s words or ideas—can result in very serious penalties for a professional sociologist.

• Typically, it is grounds for dismissal from a job and a formal reprimand from the American Sociological Association.

• Avoiding plagiarism is not always as easy as it might sound!
• Write using your own words. It might seem like a waste of time when someone else said it so well, but it comes out better overall.

• If you use words even something close to what someone else wrote, cite them.

• If you use someone else’s ideas, cite them.

• If you note someone’s else’s findings, cite them.

• If you quote someone else, cite them.
SUBMITTING PAPER TO SCHOLARLY JOURNAL
Overview of Peer Review Process

Paper Submitted

Confirmation of Receipt

Initial Decision by Editor

Rejection

Decide to Review

Assign Reviewers

Reviewers Accept Invite

Reviews Completed

Revise

Accept

Reject

Notification to Author

Revise

Accept

Revision Received

Revision Checked

Paper sent to Publisher
“Many papers are rejected simply because they don’t fulfil journal requirements. They don’t even go into the review process.”

- Identify a few possible target journals/series but be realistic
- Follow the Author Guidelines – scope, type of paper, word length, references style, etc
- Find where to send your paper (editor, regional editor, subject area editor). Check a copy of the journal/series or the publisher’s web site
- Send an outline or abstract and ask if this looks suitable and interesting (or how it could be made so)
- Confirm how an editor would like a submission, e.g. e-mail; hard copy
- **Read** at least one issue of the publication – visit your library for access
Every journal published will have detailed notes and guidelines.
EDITORS AND REVIEWERS LOOK FOR ...

- Originality – what’s **new** about subject, treatment or results?
- Relevance to and extension of existing knowledge
- Research methodology – are conclusions valid and objective?
- Clarity, structure and quality of writing – does it communicate well?
- Sound, logical progression of argument
- Theoretical and practical implications (the ‘so what?’ factors!)
- Recency and relevance of references
- **Adherence to the editorial scope and objectives** of the journal
Some Key Questions

- **Readability** – Does it communicate? Is it clear? Is there a logical progression without unnecessary duplication?
- **Originality** – Why was it written? What’s new?
- **Credibility** – Are the conclusions valid? Is the methodology robust? Can it be replicated? Is it honest – don’t hide any limitations of the research? You’ll be found out.
- **Applicability** – How do findings apply to the world of practice? Does it pinpoint the way forward for future research?
- **Internationality** – Does it take an international, global perspective?
• Let someone else see it — show a draft to one or more friends or colleagues and ask for their comments, advice and honest criticism
• We are always too close to our own work to see its failings
• Always proof-check thoroughly — no incorrect spellings, no incomplete references. Spell checkers are not fool-proof
• A request for revision is good news! It really is
• You are now in the publishing cycle. Nearly every published paper is revised at least once
• Don’t panic!
• Even if the comments are sharp or discouraging, they aren’t personal
GROUP ASSIGNMENT (+- 60 minutes)

• Create a group of 4 people

• Do the following
 – Read the paper provided
 – Discuss within your group and criticize its contents
 • What are your suggestions to improve the paper?
THANK YOU.....