Regresi Linier Berganda (dengan EViews )

image_print

Regresi Linier Berganda yang akan disimulasikan pada bagian ini menggunakan pendekatan Ordinary Least Squares (OLS). Penjelasan akan dibagi menjadi 4 (empat) tahapan, yaitu:

  • Persiapan Data (Tabulasi Data)
  • Estimasi Model Regresi Linier (Berganda)
  • Pengujian Asumsi Klasik
  • Uji Kelayakan Model (Goodness of Fit Model)
  • Intepretasi Model Regresi Linier (Berganda)

Persiapan data dimaksudkan untuk melakukan input data ke dalam software EViews. Setelah data di-input kedalam software EViews, maka langkah selanjutnya adalah melakukan estimasi (pendugaan) model (persamaan) regresi linier, baru dilanjutkan dengan pengujian asumsi klasik. Pengujian asumsi klasik dilakukan setelah model regresi diestimasi, bukan sebelum model diestimasi. Tidak mungkin pengujian asumsi klasik dilakukan sebelum model regresi diestimasi, karena pengujian asumsi klasik yang meliputi normalitas, heteroskedastisitas dan autokorelasi membutuhkan data residual model yang didapat setelah model terbentuk. Apabila model yang terbentuk tidak memenuhi asumsi klasik yang disyaratkan, maka dibutuhkan modifikasi/ transformasi/penyembuhan terhadap data ataupun model regresi. Pada bagian ini akan dibahas solusi yang harus ditempuh apabila tidak dipenuhinya asumsi klasik dalam model regresi linier, terutama heteroskedastisitas. Tahap terakhir dari bagian ini akan dijelaskan bagaimana melihat layak tidaknya model dan menginterpretasikan model yang terbentuk. Berikut rincian tahap-tahap yang dilakukan dalam regresi linier berganda :

Selanjutnya dapat dilihat di link berikut ini: Regresi Linier Berganda (Eviews)

About Muhammad Iqbal

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *